Selasa, 20 Januari 2015

manajemen memory II

Sistem Paging

A. Pengertian
Sistem paging adalah suatu sistem manajemen pada sistem operasi yang mengatur program yang sedang berjalan.  Metode dasar dari paging adalah dengan memecah memori fisik menjadi blok-blok yang berukuran tertentu yang disebut dengan frame dan memecah memori logika menjadi bok-blok yang berukuran sama dengan frame yang disebut page. Untuk mengatasi apabila suatu program lebih besar dibandingkan dengan memori utama adalah dengan konsep overlay dan konsep memori maya(virtual memori):

#    Konsep Overlay, yaitu dimana program yang di jalankan dipecah menjadi beberapa bagian yang dapat dimuat oleh memory (overlay), sedangkan yang belum dieksekusi akan disimpan di dalam disk, yang nantinya akan dimuat ke memori begitu diperlukan dalam ekekusi.

#    Konsep Memori Maya, yaitu kemampuan untuk mengalamati ruang memori melebihi memori utama yang tersedia.

Sekarang apa bedanya dari table page: 
#    Perbedaannya adalah bahwa paging itu memecah memori fisik menjadi blok-blok yang berukuran tertentu di sebut frame, dan memecah memori logika menjadi blok-blok yang disebut page, seperti di jelaskan dalam point pengertian di atas, Jadi karena ada program yang melebihi memori utama, maka dengan paging ini, dapat di pecah-pecah menjadi beberapa bagian, sehingga program dapat di eksekusi.
#    Sedangkan tabel page digunakan untuk menerjemahkan  memori logika ke memori  fisik, dengan perantara MMU (Memory Management Unit), dan pengeksekusian proses akan mencari memori berdasarkan table page ini. Sehingga pada waktu memori logika di pecah-pecah maka dengan tabel page ini akan diterjemahkan dan eksekusi dengan menggunakan tabel tersebut.

Segmentasi
Segmentasi merupakan skema manajemen memori yang mendukung cara pandang seorang programmer terhadap memori. Ruang alamat logika merupakan sekumpulan dari segmen-segmen.Masing-masing segment mempunyai panjang dan nama. Alamat diartikan sebagai nama segmen dan offset dalam suatu segmen. Jadi jika seorang pengguna ingin menunjuk sebuah alamat dapat dilakukan dengan menunjuk nama segmen dan offsetnya. Untuk lebih menyederhanakan
implementasi, segmen-segmen diberi nomor yang digunakan sebagai pengganti nama segment.
Sehingga, alamat logika terdiri dari dua tupple: [segment-number, offset]. 

Segmentasi Perangkat Keras
Meskipun seorang pengguna dapat memandang suatu objek dalam suatu program sebagai alamat berdimensi dua, memori fisik yang sebenarnya tentu saja masih satu dimensi barisan byte. Jadi kita harus bisa mendefinisikan pemetaan dari dua dimensi alamat yang didefinisikan oleh pengguna ke satu dimensi alamat fisik. Pemetaan ini disebut sebagai sebuah segment table. Masing-masing masukan dari mempunyai segment base dan segment limit. Segment base merupakan alamat fisik dan segmen limit diartikan sebagai panjang dari segmen.



Memory Virtual

Beberapa sistem operasi memerlukan yang namanya virtual memory. Layaknya Linux yang membutuhkan swap, microsoft windows vista ataupun XP pun membutuhkan yang namanya virtual memory. Pengertian dari Virtual memory itu sendiri yakni memori sementara yang digunakan komputer untuk menjalankan berbagai program aplikasi ataupun menyimpan data yang membutuhkan memory yang lebih besar dari memory yang telah tersedia ( Memory fisik seperti RAM, baca disini untuk lebih lengkap ). Program ataupun data yang tidak muat dimasukan pada memory asli ( RAM ), akan disimpan ke dalam sebuah Pagging File. Pengertian Pagging fileialah data yang hanya disimpan sementara atau bisa disebut swap. Pada sistem operasi linux kita diharuskan untuk membuat dua partisi utama yaitu untuk system dan untuk swap. Virtual Memory ini Berbeda halnya dengan Memory fisik seperti RAM, karena ram merupakan komponen yang termasuk kedalam golongan hardware. Walapun dalam kenyatannya Virtual Memory ini disimpan di harddisk, tetapi kerjannya itu tidak tampak, artinya berjalan secara software namun disimpan dihardware. Data yang disimpan ini tidak dapat bertahan lama, dalam artian hanya saat di gunakan saja. Dan bila komputer dimatikan, data data yang tadinya ada di virtual memory akan hilang. Jadi Fungsi Virtual Memory ialah untuk mengoptimalkan kinerja dari komputer, dengan tambahan memory, maka kemungkinan terjadi crash sangat kecil sekali. Ukuran dari paging file biasanya berbeda - beda, kalau ukuran paging file linuxialah 2 kali lipat dari memory aslinya. Misalkan kita memakai memory berkapasitas 512 MB, maka ukuran paging filenya yaitu 1 GB. Walaupun tidak harus 2 GB, tapi untuk memaksimalkan kinerja maka sebaiknya 2 kali lipatnya. Dan untuk Ukuran Paging file Di windows XP dan Vista Yaitu 1,5 kali dari kapasitas aslinya. Misalkan kita menggunakan memory sebesar 1 GB, maka paging filenya sebesar 1,5 GB. Dalam Xp maupun Vista paging file ini dinamai dengan pagefile.sys bila anda ingin mencarinya, pasti tidak akan ketemu, karena file ini disembunyikan atau hidden files. 

MANAJEMEN MEMORY !

MANAJEMEN MEMORY

Menejemen memori di bagi menjadi 2 yaitu :
  1. a.   Menejemen memori statis
Dengan pemartisian statis, jumlah, lokasi dan ukuran proses dimemori tidak beragam sepanjang waktu secara tetap.
  1. Menejemen memori dinamis
Dengan pemartisian dinamis, jumlah, lokasi dan ukuran proses memori dapat beragam sepanjang waktu secara dinamis.
  1. 1. Manajemen memori berdaasar alokasi memori:
    1. a.     Alokasi memori berturutan
Alokasi memori secara berturutan adalah tiap proses menempati satu blok tunggal memori yang berturutan
Keunggulan :
  • Sederhana
    • Tak terbentuk lubang lubang memori bersebaran
    • Proses dapat dieksekusi lebih cepat
Kelemahan:
  • Dapat memboroskan memori
  • Tidak dapat memuatkan proses jika tidak ada satu blok memori yang mencukupi
  1. b.    Alokasi memori tak berturutan
Program dibagi menjadi beberapa blok atau segmen. Blokblok program ditempatkan di memori dalam potonganpotongan tanpa perlu saling berdekatan. Teknik ini biasa digunakan pada system memori maya sebagai alokasi pagepage dilakukan secara global.
Keunggulan:
  • Sistem dapat memanfaatkan memori utama secara lebih efisien
  • System operasi masih mampu memuatkan proses bila jumlah total lubanglubang  memori cukup untuk memuat proses yang akan dieksekusi
Kelemahan:
  • Pengendalian lebih rumit dan sulit
    • Kemungkinan terjadi banyak lubang memori yang tak terpakai bersebaran
  1. 2. Manajemen memori berdasarkan keberadaan
    1. a.    Manajemen memori dengan swapping
Manajemen memori dengan pemindahan citra proses antara memori utama dengan disk selama eksekusi.
  1. b.    Manajemen memori tanpa swapping
Manajemen memori tanpa pemindahan citra proses antara memori utama dengan disk selama eksekusi
  1. 3. Manajemen memori tanpa swapping
Terdiri dari :
  1. a.   Monoprogramming
Monoprogramming sderhana tanpa swapping merupakan manajemen memori sederhana. Sistem computer hanya mengijinkan satu program pemakai berjalan pada satu waktu. Semua sumber daya sepenuhnya dikuasai proses yang sedang berjalan.
Ciriciri:
  • Hanya satu proses pada satu saat
  • Hanya satu proses menggunakan semua memori
  • Pemakai memuatkan program ke seluruh memori dari disk/tape
  • Program mengambil alih kendali seluruh mesin
Karena hanya terdapat satu proses dan menguasai seluruh sistem maka alokasi memori dilakukan secara berturutan
Embedded system
Teknik monoprogramming masih dipakai untuk sistem kecil yaitu system tempelan (Embedded sitem) yang terdapat pada system lain. Sistem tempelan menggunakan mikroprosessor kecil. Sistem ini biasanya mengendalikn suatu alat sehingga bersifat intelejen(intelejentdevice) dalam menyediakan satu fungsi spesifik.
Proteksi pada monoprogramming sederhana
Pada monoprogramming pemakai memiliki kendali penuh terhadapmemori utama.Memori terbagi menjadi 3 bagian , yaitu
  • Bagian rutin system operasi
  • Bagian program pemakai
  • Bagian yang tidak digunakan
Masalah proteksi di monoprogramming adalah cara untuk melindungi
rutin system operasi dari penghancuran program pemakai. Program
pemakai dapat tersesat sehingga memanipulasi atau menempati ruang
memori rutin system operasi. Aktivitas ini dapat merusak system operasi.
Proteksi diimplementasikan dengan menggunakan satu register batas di
processor. Setiap kali program pemakai mengacu alamat memori
dibandingkan dengan register batas untuk memastikan proses tidak
pemakai tidak merusak system operasi, yaitu tidak melewati nilai register
batas.
Register batas berisi alamat memori tertinggi yang dipakai system operasi.Jika program pemakai mencoba memasuki system operasi, instruksi diintersepsi dan job diakhiri dan diberi pesan kesalahan.
  1. b.                  Multiprogramming dengan pemartisian statis
Alasan penggunaan multiprogramming:
  • Mempermudah programmer
  • Agar dapat memberikan layanan interaktif ke beberpapa orang secara
simultan
  • Efisiensi penggunaan sumber daya
    • Eksekusi lebih mudah jika proses besar dipecah menjadi beberapa proses kecil
    • Dapat mengerjakan sejumlah job secara simultan
Strategi penempatan program ke paritisi
a.         Strategi penempatan pada pemartisian menjadi partisi-partisi berukuran
sama.Penempatan proses ke memori dilakukan secara mudah karena           dapat dipilih sembarang partisi yang kosong.
b.         Strategi penempatan pada pemartisian menjadi partisi-partisi berukuran
berbeda.
Relokasi.
Adalah masalah penempatan proses sesuai alamat fisik sehubungan alamat partisi memori dimana proses ditempatkan. Proses dapat ditempatkan pada  partisi-partisi berbeda menurut keadaan sistem saat itu. Pengalamatan  fisik secara absolut untuk proses tidak dapat dilakukan.
Proteksi pada Multiprogramming
Masalah proteksi pada banyak partisi dengan banyak proses di satu system secara bersamaan dikhawatirkan proses menggunakan atau modifikas idaerah yang dikuasai proses lain.Pada komputer IBM 360 membagi memori menjadi blok-blok,tiap blok ditambah 4 bit kode proteksi. Proses juga mempunyai PSW (programstatus Word) yang antar lain berisi status proteksi. Status proteksi berisi 4bit yang merupakan kunci dalam pengasesan memori.Proses hanya diijinkan mengakses blok blok memori yang berkode proteksi sama dengan kode proteksi yang dimiliki PSW proses.Solusi lain adalah dengan base register dan limit register. Base register diisi alamat awal partisi dan limit register diisi panjang partisi. Setiap alamat yang dihasilkan secara otomatis ditambah dengan nilai base register.Instruksi yang mengacu pada alamat yang melebihi limit register akan menimbulkan trap yang memberi tahu system operasi bahwa telah terjadi pelanggaran akses memori.
Fragmentasi pada pemartisian statis
  • Fragmentasi internal, yaitu proses tidak mengisi penuh partisi yangtelah ditetapkan untuk proses
  • Fragmentasi eksternal, partisi dapat tidak digunakan karena ukuranpartisi lebih kecil dibandingkan ukuran proses yang menunggu diantrian, sehingga tidak digunakan.
  1. 4. Menejemen memori pada multi programming
Multiprogramming dengan swapping.
Pada sistem batch, organisasi memori dengan pemartisian tetap telah efektif. Selama jumlah proses yang terseduan dapat membuat pemroses sibuk, tak ada alasaan menggunakanan teknik lebih rumit. Pada sistem timesharing, situasinya berbeda, umumnya terdapat lebih banyak proses dibanding memori yang tersedia untuk memuat seluruh proses. Dengan demikian perlu menyimpan proses-proses yang tidak termuat ke disk. Untuk menjalankan proses-proses yang akan dieksekusi, proseproses itu harus telah masuk memori utama. Pemindahan  proses dari memori utama ke disk dan sebaliknya di sebut swapping. Dengan swapping, multiprogramming pada sistem time sharing dapt ditingkatkan kinerjanya yaitu dengan memindah proses-proses blocked ke disk dan hanya memasukkkan proses-proses ready ke memori utama. Beragam masalah harus diatasi multiprogramming dengan swapping, antara lain :
a. Pemartisian secara dinamis.
b. Strategi pencatatan pemakaian memori.
c. Algoritma penempatan proses ke memori.
d. Strategi penempatan ruang swap pada disk.
Multiprogramming dengan pemartisian dinamis
Pemartisian statis tidak menarik karena terlalu banyak diboroskan proses-proses yang lebih kecil dibanding partisi yang ditempatinya. Dengan pemartisian dinamis maka jumlah, lokasi dan ukuran proses di memori dapat beragam sepanjang waktu secara dinamis. Proses yang akan masuk ke memori segera dibuatkan paritisi untuknya sesuai kebutuhannya. Teknik ini meningkatkan utilitasi memori.
Kelemahan pemartisian dinamis adalah :
a. Dapat terjadi lubang-lubang kecil memori di antara partisi-partisi yang dipakai.
b. Merumitkan alokasi dan dealokasi memori.
5.                  Pencatatan pemakain memori
Memori yang tersedia harus dikelola, dilakukan dengan pencatatan pemakaian
memori. Terdapat dua cara utama pencatatan pemakaian memori, yaitu :
1.         Pencatatan memakai peta bit.
Memori dibagi menjadi unit-unit alokasi,berkorespondensi dengan tiap unit
alokasi adalah satu bit pada bit map.
* Nilai 0 pada peta bit berarti unit itu masih bebas.
* Nilai 1 berarti unit digunakan.
Masalah pada peta bit adalah penetapan mengenai ukuran unit alokasi
memori, yaitu :
* Unit lokasi memori berukuran kecil berarti membesarkan ukuran peta bit.
* Unit alokasi memori n berukuran besar berarti peta bit kecil tapi memori
banyak disiakan pada unit terakhir jika ukuran proses bukan kelipatan unit
alokasi.
Keunggulan :
* Dealokasi dapat dilakukan secara mudah, hanya tinggal menset bit yang
berkorespondensi dengan unit yang telah tidak digunakan dengan 0.
Kelemahan :
* Harus dilakukan penghitungan blok lubang memori saat unit memori bebas.
* Memerlukan ukutan bit map besar untuk memori yang besar.
2.         Pencatatan memakai senarai berkait.
Sistem operasi mengelola senarai berkait (linked list) untuk segmen-segmen memori yang telah dialokasikan dan bebas. Segmen memori menyatakan  memori untuk proses atau memori yang bebas (lubang). Senarai segmen diurutkan sesuai alamat blok.
Keunggulan :
* Tidak harus dilakukan perhitungan blok lubang memori karena sudah
tercatat di node.
* Memori yang diperlukan relatif lebih kecil.
Kelemahan :
* Dealokasi sulit dilakukan karena terjadi berbagai operasi penggabungan
node-nude di senarai.
6.                  Penggunaan memori
§     Pencocokan ukuran informasi ke penggalan memori kerja di sebut sebagai fit
§     Bagian dari memori kerja yang tidak terpakai dan letaknya tersebar di banyak wilayah memori kerja disebut sebagai fragmen.
§     Peristiwa terjadinya fragmen disebut fragmentasi.
7.                        Pencocokan(fit) dan fragmentasi
Beberapa jenis strategi pencocokan antara lain :
1.         Cocok pertama / First fit algorithm
Pencocokan terjadi menurut antrian informasi, informasi yang terdepan dicocokkan terlebih dahulu dan menurut urutan penggalan, penggalan yang terdepan dicocokkan terlebih dahulu. Contoh : Antrian informasi setiap ukuran.
2.         Cocok pertama berdaur / Cyclical first fit
Pencocokan tidak harus dimulai dari urutan penggalan memori pertama.Contoh : informasi 2K telah menempati penggalan 4 K, pencocokan cocok pertama berdaur bagi informasi 1K tidak lagi mencoba penggalan 4K tetapi 3K dan karena penggalan memori ini dapat menampung informasi tersebut, maka pada cocok pertama berdaur informasi 1K menempati memori 3K.
3.         Cocok terbaik / best fit
Mencari penggalan memori yang dapat menampung informasi yang paling pas / tidak ada memori di penggalan yang tersisa / sisanya yang paling kecil.Contohnya informasi pertama 2K mencari penggalan informasi yang terpas yaitu pada penggalan memori 2K juga / tidak ada sisa.
4.         Cocok terburuk / worst fit
Kebalikan dari cocok terbaik yaitu akan menempati penggalan yang ukurannya terbesar sehingga banyak ruang memori pada penggalan itu yang tidak terpakai.Contohnya informasi 2K akan menempati penggalan berukuran 6K sisa yang tidak terpakai = 4K.
8.                  Fragmentasi
Fragmentasi yaitu penyiaan/pemborosan memori akan terjadi pada setiap organisasi penyimpanan.
Fragmentasi pada pemartisian tetap terjadi adalah :
a. Fragmentasi internal.
Proses tidak mengisi penuh partisi yang telah ditetapkan untuk proses.
b. Fragmentasi ekstenal.
Partisi dapat tidak digunakan karena ukuran partisi lebih kecil dibanding ukuran proses yang menunggu di antrian, sehingga tidak digunakan.
Untuk sistem-sistem tanpa swapping (pemindahan lokasi proses), maka fragmentasi-fragmentasi tidak dapat dikurangi. Pada sistem-sistem dengan swapping, sistem lebih intelijen karena dapat melakukan beberapa altenatif mengatasi fragmentasi eksternal.
9.                  Sistem Buddy
Sistem buddy adalah algoritma pengelolaan memori yang memanfaatkan kelebihan penggunaan bilangan biner dalam pegalamatan memori. Karakteristik bilangan biner digunakan untuk mempercepat penggabungan lubang-lubang berdekatan ketika proses terakhir atau dikeluarkan.Manajer memori mengelola senarai blok-blok bebas berukuran 1, 2, 4, 8, 16 byte dan seterusnya sampai kapasita memori. Pada komputer dengan 1 Mbyte memori maka dapat terdapat 21 senarai yaitu dari 1 byte sampai 1 Mbyte.
Keunggulan :
·      Sistem buddy mempunyai keunggulan dibanding algoritma-algoritma yang   mengurutkan blok-blok berdasarkan ukuran. Ketika blok berukuran 2k dibebaskan, maka manajer memori hanya mencari pada senarai lubang 2k untuk memeriksa apakah dapat dilakukan penggabungan. Pada algoritma-algoritma lain yang memungkinkan blok-blok memori dipecah dalam sembarang ukuran, seluruh senarai harus dicari.
·           Dealokasi pada sistem buddy dapat dilakukan dengan cepat.
Kelemahan :
·           Utilisasi memori pada sistem buddy sangat tidak efisien.Masalah ini muncul dari dari kenyataan bahwa semua permintaan dibulatkan ke 2k terdekat yang dapat memuat. Proses berukuran 35 kb harus dialokasikandi 64 kb, terdapat 29 kb yang disiakan. Overhead ini disebut fragmentasi internal karena memori yang disiakan adalah internal terhadap segmen-segmenyang dialokasikan.
10.                  Alokasi ruang swap pada disk
Strategi dan algoritma yang dibahas adalah untuk mencatat memori utama. Ketika proses akan dimasukkan ke memori utama (swap-in), sistem dapat menemukan ruang untuk proses-proses itu.
Terdapat dua strategi utama penempatan proses yang dikeluarkan dari memori utama (swap-out) ke disk, yaitu :
· Ruang disk tempat swap dialokasikan begitu diperlukan.
Ketika proses harus dikeluarkan dari memori utama, ruang disk segera dialokasikan sesuai ukuran proses. Untuk itu diperlukan algoritma untuk mengelola ruang disk seperti untuk mengelola memori utama. Ketika proses dimasukkan kembali ke memori utama segera ruang disk untuk swap didealokasikan.
· Ruang disk tempat swap dialokasikan lebih dulu.
Saat proses diciptakan, ruang swap pada disk dialokasikan. Ketika proses harus dikeluarkan dari memori utama, proses selalu ditempatkan ke ruang yang telah dialokasikan, bukan ke tempat-tempat berbeda setiap kali terjadi swap-out. Ketika proses berakhir, ruang swap pada disk didealokasikan.


Manajemen memory 1

Hierarki Memori atau Memory Hierarchy dalam arsitektur komputer adalah sebuah pedoman yang dilakukan oleh para perancang demi menyetarakan kapasitas, waktu akses, dan harga memori untuk tiap bitnya. Secara umum, hierarki memori terdapat dua macam yakni hierarki memori tradisional dan hierarki memori kontemporer.
Hierarki memori memang disusun sedemikian rupa agar semakin ke bawah, memori dapat mengalami hal-hal berikut:
  • Peningkatan waktu akses (access time) memori (semakin ke bawah semakin lambat, semakin ke atas semakin cepat)
  • Peningkatan kapasitas (semakin ke bawah semakin besar, semakin ke atas semakin kecil)
  • Peningkatan jarak dengan prosesor (semakin ke bawah semakin jauh, semakin ke atas semakin dekat)
  • Penurunan harga memori tiap bitnya (semakin ke bawah semakin semakin murah, semakin ke atas semakin mahal)
Memori yang lebih kecil, lebih mahal dan lebih cepat diletakkan pada urutan teratas. Sehingga, jika diurutkan dari yang tercepat, maka urutannya adalah sebagai berikut:

 register mikroprosesor. Ukurannya yang paling kecil tapi memiliki waktu akses yang paling cepat, umumnya hanya 1 siklus CPU saja.
 2 Cache mikroprosesor, yang disusun berdasarkan kedekatannya dengan prosesor (level-1, level-2, level-3, dan seterusnya). Memori cache mikroprosesor dikelaskan ke dalam tingkatan-tingkatannya sendiri:
  •    A . level-1: memiliki ukuran paling kecil di antara semua cache, sekitar puluhan kilobyte saja. Kecepatannya paling cepat di antara semua cache.
  •    B . level-2: memiliki ukuran yang lebih besar dibandingkan dengan cache level-1, yakni sekitar 64 kilobyte, 256 kilobyte, 512 kilobyte, 1024 kilobyte, atau lebih besar. Meski demikian, kecepatannya lebih lambat dibandingkan dengan level-1, dengan nilai latency kira-kira 2 kali hingga 10 kali. Cache level-2 ini bersifat opsional. Beberapa prosesor murah dan prosesor sebelum Intel Pentium tidak memiliki cache level-2.
  •    C . level-3: memiliki ukuran yang lebih besar dibandingkan dengan cache level-2, yakni sekitar beberapa megabyte tapi agak lambat. Cache ini bersifat opsional. Umumnya digunakan pada prosesor-prosesor server dan workstation seperti Intel Xeon atau Intel Itanium. Beberapa prosesor desktop juga menawarkan cache level-3 (seperti halnya Intel Pentium Extreme Edition), meski ditebus dengan harga yang sangat tinggi.
 3 Memori utama: memiliki akses yang jauh lebih lambat dibandingkan dengan memori cache, dengan waktu akses hingga beberapa ratus siklus CPU, tapi ukurannya mencapai satuan gigabyte. Waktu akses pun kadang-kadang tidak seragam, khususnya dalam kasus mesin-mesin Non-uniform memory access (NUMA).
 4 Cache cakram magnetis, yang sebenarnya merupakan memori yang digunakan dalam memori utama untuk membantu kerja cakram magnetis.
 5 Cakram Magnetis, merupakan piranti penyimpanan sekunder yang paling banyak dijumpai pada sistem komputer  modern. Pada saat disk digunakan, motor drive berputar dengan kecepatan yang sangat tinggi. Ada sebuah read-write head yang ditempatkan di atas permukaan piringan tersebut. Permukaan disk terbagi atas beberapa track yang masih terbagi lagi menjadi beberapa sektor. Cakram fixed-head memiliki satu head untuk tiap-tiap track, sedangkan cakram moving-head (atau sering dikenal dengan nama cakram keras ) hanya memiliki satu head  yang harus dipindah-pindahkan untuk mengakses dari satu track ke track yang lainnya.
 6 Tape Magnetis, adalah suatu medium untuk perekaman magnetis, dibuat dari suatu mantel magnetizable tipisyang panjang. Kebanyakan audio, video dan penyimpanan data komputer jenis ini dikembangkan Negara Jerman, berdasar pada konsep kawat magnetis adalah Alat yang merekam dan memainkan kembali audio dan pita perekam penggunaan video adalah alat perekam dan video recorder. Suatu alat yang menyimpan data komputer pada pita perekam adalah suatu tape drive ( unit tape ).
 7 Cakram Optik, adalah suatu medium penyimpanan data komputer dapat berupa vilm atau music dan data yang dapat dibaca dengan optic reader pada room dan setiap cakram optic memiliki room yang berbeda utuk setiap jeniscakram optic tertentu, jenis-jenis cakram optik
  •  A .CD-RW menggunakan logam perpaduan antara perak, indium, antimon, dan telurrium untuk lapisan perekaman yang dapat dugunakan untuk merekam data kapasitas 600-800 MB dapat dihapus dan direkan  mengunakan konsep pelelehan logam
  •  B .DVD-RW Format ini dikembangkan oleh Pioneer pada November 1999 Mirip dengan konsep CD-RW dengan dapat menulis dan menghapus data di dalam nya tapi kapasitas 4-6 GB
  •  .Blu-ray Disc Nama Blu-ray diambil dari laser  biru-ungu yang digunakan untuk membaca dan menulis cakram jenis ini.Cakram Blu-ray dapat menyimpan 25 GB pada setiap lapisannya dengan menggunakan konsep Minimum "spot size" di mana sebuah laser dapat terfokus dibatasi oleh difraksi, dan bergantung pada panjang gelombang dari cahaya untuk penyimpanan lebih pada suatu daerah sama
You might also like:


Reference http://zeromin0.blogspot.com/2011/07/interupsi-dan-hierarki-memori.html#ixzz3PMQLqiEn

Jumat, 16 Januari 2015

STARVATION

STARVATION

A. Pengertian Starvation
         Perkembangan sistem komputer mendatang adalah menuju ke sistem multi-processing, multiprogramming, terdistribusi dan paralel yang mengharuskan adanya proses-proses yang berjalan bersama dalam waktu yang bersamaan. Hal demikian merupakan masalah yang perlu perhatian dari perancang sistem operasi. Kondisi dimana pada saat yang bersamaan terdapat lebih dari satu proses disebut dengan kongkurensi (proses-proses yang kongkuren). Dan dalam kongruensi ini pasti ada masalah yang salah satunya adalah STARVATION. Starvation adalah kondisi yang biasanya terjadi setelah deadlock. Proses yang kekurangan resource (karena terjadi deadlock) tidak akan pernah mendapat resource yang dibutuhkan sehingga mengalami starvation (kelaparan).Ilustrasi starvation dengan deadlock seperti pada gambar di bawah ini.


          Dalam kasus diatas, antrian di sebelah kiri menunggu antrian kanan untuk mengosongkan jembatan (resource), begitu juga dengan antrian kanan. Akhirnya tidak terjadi kemajuan dalam kerja dua antrian tersebut.Misal ada proses A mempunyai resource X, proses B mempunyai resource Y. Kemudian kedua proses ini dijalankan bersama, proses A memerlukan resource Y dan proses B memerlukan resource X, tetapi kedua proses tidak akan memberikan resource yang dimiliki sebelum proses dirinya sendiri selesai dilakukan. Sehingga akan terjadi tunggu-menunggu.
  Namun, starvation juga bisa terjadi tanpa deadlock. Hal ini ketika terdapat kesalahan dalam sistem sehingga terjadi ketimpangan dalam pembagian resouce. Satu proses selalu mendapat resource, sedangkan proses yang lain tidak pernah mendapatkannya. Ilustrasi starvation tanpa deadlock di dunia nyata dapat dilihat di bawah ini. Pada gambar di bawah ini.



pada antrian kanan terjadi starvation karena resource (jembatan) selalu dipakai oleh antrian kiri, dan antrian kanan tidak mendapatkan giliran. Jika dua proses ingin mengakses satu sumber daya tunggal maka sistem operasi mengalokasikan untuk salah satu proses dan mengharuskan proses lain menunggu. Proses yang ditolak pengaksesan menjadi melambat. Jika terlalu parah maka proses di-blocked terus-menerus sehingga tidak pernah mengakses sumber daya. Proses tidak pernah dapat berakhir dengan suskses.



Dalam beberapa cara Starvation dapat diselsaikan dengan sumber daya yang dialokasikan dengan dengan melibatkan sistem operasi, dengan pengendaliain  persaingan ini proses-proses seperti ini akan teratasi. Kerjasama ini meliputi sistem operasi yang saling berinteraksi tanpa dinyatakan dengan eksplisit. Sistem operasi ini sudah terprogram melalui sistem call jadi antara proses satu dengan yang lain tidak ada pembedaan yang mengakibatkan persaingan antara proses-proses tersebut. Program ini sudah dimasukkan dalam sistem operasi yang sudah sesuai dengan mutual exclusion.

B. Algoritma Starvation
Starvation dapat terjadi pada proses penjadwalan yang menggunakan prinsip “proses yang paling cepat diselesaikan didahulukan”, seperti pada Shortest Job First (SJF) dan Penjadwalan Prioritas.

Logikanya, jika kita mempunyai banyak kebutuhan, kita akan memilahnya mana yang didahulukan berdasarkan sesuatu. Setelah kita selesai menyusunnya, ternyata ada kebutuhan lain yang datang (misalkan kebutuhan A) dan ternyata kebutuhan itu mengalahkan salah satu kebutuhan kita. Sebelum kebutuhan A terpenuhi, datang lagi kebutuhan lain yang mengalahkan kebuthan awal. Jika hal ini terjadi secara terus menerus, maka ada kebuthan awal kita yang tidak terpenuhi (starvation).

Contoh nyatanya, pada kehidupan mahasiswa. Seorang mahasiswa telah memiliki 3 tugas dan ingin juga menonton film baru. Mahasiswa tersebut mendahulukan menyelesaikan tugas dibandingkan menonton. Sebelum ketiga tugas tersebut selesai, dosen lain memberinya tugas baru. Keesokan harinya ada tugas dari asisten untuk praktikum berikutnya. Ketika tugas satu belum selesai, sudah ada tugas lain dari dosen atau asisten. Hal ini terus berulang, sehingga keinginan mahasiswa tersebut untuk menonton film baru bisa tidak terlaksana atau tidak terpenuhi.

C. Mengatasi Starvation


Ada beberapa cara untuk mengatasi Starvation, salah satunya dengan Aging. Pada flowchart di atas, proses awal yang ada diberi urutan ( N ) pemrosesan dengan rumus N = ( P+T ) / P. N maksimum akan mulai dikerjakan dan proses yang lain dinaikkan tingkat urutan prosesnya agar nanti jika ada proses lain yang masuk, proses terdahulu mendapatkan bagian resource dan dapat dikerjakan. Jika ada beberapa proses yang memiliki N maksimum, maka diantara proses tersebut dilihat dari waktu yang dibutuhkan untuk menyelesaikannya. Jika masih sama juga, maka dilihat waktu kedatangannya. 
Selain itu, Starvation juga dapat diatasi dengan pemrosesan dengan cara Round Robin. Pada Round Robin, proses yang masuk akan dimasukkan ke dalam antrian menurut kedatangan proses tersebut. Dalam penyelesainnya, suatu proses tidak akan langsung selesai jika waktu yang dibutuhkan melebihi waktu kuantum yang diberikan. Waktu kuantum adalah waktu yang diberikan untuk menyelesaikan suatu proses. Ketika sutu proses telah mencapai batas waktu kuantum, sisa dari proses tersebut dikembalikan ke antrian paling belakang dan resource dipindahkan ke proses selanjutnya. Dengan cara ini, semua proses yang mengantri, akan mendapatkan resource secara bergantian ( tidak ada proses yang memonopoli resource ) sehingga semua proses dapat diselesaikan.

DEADLOCK

Deadlock

Prinsip-Prinsip Deadlock

1. Definisi Deadlock
    Pemblokiran permanen sejumlah proses yang berkompetesi dalam mendapatkan sumber daya sistem                  atau yang berkomunikasi satu dengan lainnya.
    Semua Deadlock mencakup konflik kebutuhan akan sumber daya oleh dua proses atau lebih. Contoh yang umumnya adalah Deadlock lalu lintas . Gambar 1.1 menunjukan situasi empat mobil tiba dipersimpangan empat arah dalam waktu yang hampir bersamaan. keempat kuadran persimpangan itu merupakan sumber daya yang memerlukan kontrol, pada suatu saat, apabila keempat mobil itu ingin melintasi persimpangan, persyaratan sumber dayanya adalah sebagai berikut:


  • Mobil yang bergerak ke utara membutuhkan kuadran 1 dan kuadran 2.
  • Mobil yang bergerak ke barat membutuhkan kuadran 2 dan kuadran 3.
  • Mobil yang bergerak ke selatan membutuhkan kuadran 3 dan kuadran 4.
  • Mobil yang bergerak ke timur membutuhkan kuadran 4 dan kuadran 1.
Aturan jalan raya yang normal adalah bahwa mobil yang berada dipersimpangan empat arah harus memberikan jalan kepada mobil yang berada disebelah kanannya. Aturan ini akan berfungsi apabila terdapat hanya dua atau tiga mobil di persimpangan itu, Misalnya, apabila hanya mobil yang menuju utara dan yang menuju barat tiba dipersimpangan, mobil yang menuju utara akan menunggu, sedangkan mobil yang menuju barat melanjutkan perjalanannya. Namun apabila empat buah mobil tiba dipersimpangan pada saat yang hampir bersamaan, keempat mobil itu akan terjadi Deadlock.

  • Penjelasan Deadlock (Gambar 1.1)

  •  Contoh Deadlock (Gambar 1.2)

Apabila keempat mobil itu mengabaikan aturan  dan melanjutkan perjalanan dengan melintasi persimpangannya, keempat mobil itu akan mengambil satu sumber daya (satu kuadran) namun tidak dapat melanjutkan perjalannya karena sumber daya yang keduanya diperlukan telah diambil oleh mobil lainnya.   


       
2. Penyebab Deadlock  / Syarat Terjadi Deadlock

  •     Mutual Exclusion : Suatu kondisi dimana setiap sumber daya diberikan tepat pada satu proses pada    suatu waktu.

  •     Hold and Wait : Kondisi yang menyatakan proses-proses yang sedang memakai suatu sumber daya dapat meminta    sumber daya yang lain.

  •     Non-pre-emptive : Kondisi dimana suatu sumber daya yang sedang berada pada suatu proses tidak dapat diambil secara paksa dari proses tersebut,sampai proses itu melepaskannya.

  •     Circular Wait : Kondisi yang menyatakan bahwa adanya rantai saling meminta sumber daya yang dimiliki oleh suatu proses oleh proses lainnya.
3. Menghindari Deadlock
    Sistem perlu memiliki informasi awal mengenai kebutuhan sumber daya

  •  Tiap proses menyatakan kebutuhan maksimum tiap jenis sumber yg dibutuhkan
  •  Algoritma deadlock-avoidance secara dinamis memeriksa state alokasi sumber daya untuk   menjamin tdk terjadinya kondisi circular-wait
  • State alokasi sumber daya didefinisikan oleh banyaknya sumber daya yg tersedia dan yg dialokasikan, dan permintaan sumber daya maksimum oleh proses

Jika proses meminta sumber daya yg tersedia, sistem harus memutuskan apakah alokasi sumber daya ini   akan menghasilkan safe state
Sistem berada pada safe state jika terdapat urutan event yg tidak menyebabkan deadlock jika semua proses meminta sumber daya maksimum sekaligus

•   Logikanya:
     – Jika sistem berada pd safe state �� no deadlock
     – Jika sistem berada pd unsafe state �� kemungkinan deadlock
     – Pencegahan: sistem tidak masuk ke unsafe state

4. Mengatasi Deadlock
   Prevention : memastikan paling sedikit satu penyebab Deadlock tidak berlaku

  • Mutual Exclusion : membuat file spool untuk resource yang digunakan bersama-sama
  • Hold and Wait : memaksa sebuah proses untuk melepaskan resource yang dimilikinya ketika meminta resource baru
  • Circular Waiting : memberikan penamaan resource berdasarkan urutan atau level
  • No Preemption : membolehkan adanya preemption
  • Avoidance : sistem menolak request terhadap resource yang berpotensi deadlock, Algoritma Banker
  • Resource manager menolak proses yang meminta resource yang berpotensi deadlock
  • Jika ada permintaan resource yang maksimum digunakan, maka proses tersebut akan dipaksa untuk melepaskan resource yang sudah dimiliknya
  • Perlu adanya informasi tambahan
  • Detection and Recovery : membiarkan Deadlock terjadi, lalu mendeteksinya, kemudian melakukan recovery, Algoritma Ostrich
  • Tindakan recovery yang dilakukan adalah : melakukan preemption, membuat checkpoint untuk rollback lalu membunuh proses yang prioritasnya kecil

5. Mencegah Deadlock
    Tiap proses harus meminta semua sumber daya yang diperlukan sekaligus dan tidak berlanjut sampai semuanya diberikan
    Jika proses telah sedang memegang resource tertentu, untuk permintaan berikutnya proses harus melepas dulu resource yg dipegangnya.
    Beri pengurutan linear terhadap resource pada semua proses

MUTUAL EXCLUSION

MUTUAL EXCLUSION


Penjelasan tema Mutual Exclusion
Pada system computer terdapat sumber daya yang tidak dapat dipakai bersama pada saat yang bersamaan seperti pada penggunaan printer, Sumber daya seperti hanya dapat menjalankan satu proses pada suatu saat, sumber daya ini disebut sumber daya kritis. Program yang menggunakan sumber daya kritis disebut sedang memasuki critical region / section .
Sistem operasi memberikan fasilitas untuk pemrogram dapat memberikan indikasi keberadaan critical region. Sistem operasi menyediakan layanan ( berupa system call ) untuk mencagah suatu proses masuk kedalam critical region akan tetapi di dalam critical region terdapat proses lain yang sedang berjalan. Mutual exclusion merupakan solusi bagi masalah pada critical region / section, mutual exclusion adalah persoalan untu menjamin hanya satu proses saja yang berjalan dalam suatu critical region / section.

Ilustrasi aplikasi tabungan


Seluruh sistem yang melibatkan banyak proses mengakses satu sumber daya bersama selalu menimbulkan persoalan mutual-exclusion.
Contohnya adalah sebagai berikut.
· Pada aplikasi tabungan, misalnya rekening A berisi Rp 1.000.000,- yang terdaftar di kantor cabang bandung.
· Kemudian pada suatu saat program aplikasi kantor cabang di Jakarta melayani penyetoran Rp 3.000.000,- ke rekening A. lalu program aplikasi membaca saldo akhir rekening A

Persoalan di atas dapat tidak terjamin mutual-exclusion jika:
1. Program aplikasi bandung menulis ke rekening A secara cepat sehingga di hasilkan saldo Rp 6.000.000. Setelah itu, program aplikasi kantor cabang Jakarta menimpa hasil itu dengan saldo Rp 4.000.000,- . Dalam kasus ini saldo akhir yang diperoleh adalah Rp 4.000.000,- bukan Rp 10.000.000,- (yang seharusnya).
2. Program aplikasi Jakarta dilakukan menulis ke rekening A secara cepat sehingga dihasilkan saldo Rp 4.000.000,-. Setelah itu program aplikasi di kantor bandung menimpa hasil itu dengan saldo Rp 6.000.000,-. Hasil yang lebih baik dibanding skenario pertama tetapi masih di bawah yang seharusnya yaitu Rp 10.000.000,-.

Kriteria Penyelesaian Mutual-Exclusion


Kemampuan menjamin mutual-exclusion harus memenuhi kriteria-kriteria berikut:
1. Mutual-exclusion harus dijamin.
2. Hanya satu proses pada satu saat yang diizinkan masuk critical section yang sama pada saat telah ada proses yang masuk critical section itu.
3. Proses yang berada di noncritical section, dilarang mem-block proses-proses lain yang ingin masuk critical section.
4. Harus dijamin proses yang ingin masuk critical section tidak menunggu selama waktu yang tak berhingga atau tidak boleh terjadi deadlock maupun startvation.
5. Ketika tidak ada proses di critical section, maka proses yang ingin masuk critical section harus diizinkan segera masuk tanpa ada waktu tunda.
6. Tidak ada asumsi mengenai kecepatan relatif proses atau jumlah proses yang ada. kriteria pada nomor satu merupakan kriteria pokok yang harus dipenuhi. Metode yang melanggar kriteria nomor satu sama sekali tidak dapat di gunakan. Pelanggaran kriteria-kriteria lain berarti metode masih bisa digunakan pada situasi-situasi tertentu tapi harus dilakukan secara hati-hati.

KONGKURENSI

Pengertian Kongkurensi 
Perkembangan sistem komputer mendatang adalah menuju ke sistem multiprocessing, multiprogramming, terdistribusi1 dan paralel2 yang mengharuskan adanya proses-proses yang berjalan bersama dalam waktu yang bersamaan. Hal demikian merupakan masalah yang perlu perhatian dari perancang sistem operasi. Kongkurensi merupakan landasan umum perancangan sistem operasi. Proses  -proses disebut kongkurensi jika proses-proses (lebih dari satu proses) berada pada saatyang sama. Proses-proses yang mengalami kongkuren dapat berdiri sendiri (independen) atau dapat saling berinteraksi, sehingga membutuhkan sinkronisasi atau koordinasi proses yang baik. Untuk penanganan kongkuren, bahasa pemograman saat ini telah memiliki mekanisme kongkurensi dimana dalam penerapannya perlu dukungan sistem operasi dimana bahasa berada.
Prinsip - prinsip Kongkurensi meliputi hal-hal berikut 
1. alokasi waktu pemrosesan untuk proses-proses.
2. pemakaian bersama dan persaingan untuk mendapatkan sumber daya.
3. komunikasi antar proses
4. sinkronisasi aktivitas banyak proses
Permasalahan Kongkurensi
Proses yang kongkuren ini mempunyai beberapa masalah yang harus diselesaikan,yaitu :  1. Mutual exclusion (pengeluaran timbal balik)
Merupakan kondisi dimana terdapat sumber daya yang tidak dapat dipakai bersama pada waktu yang bersamaan (misalnya : printer, disk drive).
2. Deadlock (buntu)
Deadloc
k merupakan kondisi terparah karena banyak proses dapat terlibat dan semuanya tidak dapat mengakhiri prosesnya secara benar.
3. Starvation(kelaparan)
Starvation
adalah keadaan dimana pemberian akses bergantian terus-menerus,dan ada suatu proses yang tidak mendapatkan gilirannya.
4. 
Sinkronisasi.
Sinkronisasi adalah proses pengaturan jalannya beberapa proses pada saat yang bersamaan.
Kesulitan – Kesulitan Yang ditimbulkan Kongkurensi :
·         1. Pemakaian bersama sumber daya global.
Apabila terdapat dua proses yang menggunakan variabel global yang sama serta keduanya membaca dan menulis ke variabel itu, maka urutan terjadinya pembacaan dan penulisan terhadap variabel itu menjadi kritis.
·       2. Pengelolaan alokasi sumber daya agar optimal.
Apabila proses A meminta suatu kanal masukan/keluaran tertentu dan dipenuhi,kemudian terjadi proses A di suspend sebelum menggunakan kanal tersebut. Jika sistem operasi mengunci kanal (tidak memperbolehkan atau mencegah proses lainuntuk menggunakannya), maka tindakan tersebut menghasilkan inefisiensi.
3. Pencarian kesalahan pemrograman.
Pencarian kesalahan pada pemograman kongkuren lebih sulit dibanding pencarian kesalahan pada program-program sekuen.


Untuk lebih jelasnya silahkan Klik dibawah ini.